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Antimicrobial peptides with
therapeutic potential



2021

= 100 000 estimated annual deaths

Naghavi, Mohsen, et al. "Global burden of bacterial antimicrobial resistance 1990–
2021: a systematic analysis with forecasts to 2050." The Lancet 404.10459 (2024)

Estimated deaths due to antimicrobial resistance

3

1.14 Mio.

(4.71 Mio. associated)

2050

1.91 Mio.

(8.22 Mio. associated)

New treatment
options are needed



Occurence of antimicrobial peptides (AMPs)

4

• Size

• Sequence

• Charge

• Dipole moment

• Flexibility

• Hydrophobicity

• Amphipathicity

• Conformation and structure

AMPs occur in a 
large diversity



Modes of Action of AMPs

Adapted from Bogden, Nat Rev Micro, 2005; Oren et al., Biopolymers, 1998; Huang et al., Phys Rev Lett, 2004 

Most AMPs interact 
with bacterial 
membranes.

5



AMP membrane interaction

6Adapted from Guha et al., Chem. Rev., 2019
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Membrane 
interaction

depends on 
properties of 

i) Peptide, 
ii) Membrane, 

iii) Environment



Antimicrobial activity:

I. Bacteriostatic: Lactoferrin (Nutrient deprivation)
II. Bactericidal: Defensins (Membrane permeabilization)

Cathelicidins(Membrane permeabilization)
III. Hydrolysis: Lysozyme, … (Carbohydrates, …)

LL32

hBD-3

hBD-3-l

Intracellular context of AMP antimicrobial activity
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Take-homes

9

AMPs are a promising alternative to classical antibiotics with a 

much lower tendency for resistance induction.

Membrane interaction is prerequisite for any AMP-pathogen 

interaction.

EA optimized

peptides

Specificity of AMPs can be narrowed using directed

optimization.



Where, who and what



Research Center Borstel, Leibniz Lung Center
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Manor house from 1751 New lab building from 2024New NRC building from 2022

https://fz-borstel.de/



Center for Structural Systems Biology (CSSB)

12https://www.cssb-hamburg.de/

First CSSB Symposium
2015



Gutsmann lab @ Research Center Borstel               Team Microfluidics
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Research focus

14

investigate membrane properties and 
interactions in the context of lung disease.

develop antimicrobials to combat
antimicrobial resistance.

explain mechanisms of microbial toxin 
membrane activity.

probe molecular adhesion mechanisms that 
underlie pathogen persistence.

generate, manipulate, characterize and 
detect bioactive aerosols.

To develop new therapies, we



Model membrane systems

15



Liposome preparation



Size order of liposomes

17Ribeiro et al., Trends Pharmacol. Sci. 31, 2010   /   Guha et al., Chem. Rev., 2019

d = 34 nm, ≈ 40.000 lipids

GUV

LUV

SUV



Conventional preparation of liposomes

18adapted from: Walde, Encyclopedia of nanoscience and nanotechnology 9, 2004



• High throughput

• Uniform size

Formation of giant liposomes on microfluidic chip

Bruns, Nandy, Nehls - unpublished 19

• High throughput

• Uniform size

• High encapsulation
efficiency



Deshpande et al., Nature communications, 2016

Octanol-assisted liposome assembly on chip

20

Oil pocket
formation

Double emulsion
droplet formation

Oil pocket
detachment



How complex should we make the system?

21

Successive complexity
increase (bottom-up) 

adds factors for
unspecific membrane

interaction

Successive complexity
decrease (top-down) can

reveal causality for
specific interaction



Which natural membranes are asymmetric?

22Lorent et al., Nat Chem Biol. 16, 2020

Erythrocyte plasma
membranes differ in 

i) headgroup
composition and

ii) lipid unsaturation



Montal-Mueller technique for asymmetric membranes

23Paulowski et al., Front. Cell Dev. Biol. 8, 2020 LPS: Lipopolysaccharide / endotoxin

Asymmetric
membranes are more
than addition of two

monolayers



Formation of asymmetric liposomes

24Pabst, Keller, Trends Biochem. Sci. 49(4), 2024

Layer-by-layer
assembly

Outer leaflet
exchange



Formation of asymmetric liposomes by phase transfer

25Paulowski et al., Front. Cell Dev. Biol. 8, 2020

Phase transfer
derived liposomes

confirm relevance of 
asymmetry

Phase transfer allows
formation of pure 
lipopolysaccharide

liposomes



Take-homes

27

To understand interaction processes at membranes, the natural

membrane complexity has to be reduced.

Membrane asymmetry is directly linked to biological function

and has to be considered for model systems. 

Microfluidic techniques allow homogeneous GUV generation

with exceptional encapsulation efficiency.



Evaluation of AMPs
with liposome techniques



Confocal microscopy on immobilized liposomes

29Schromm et al., PNAS 118(27), 2021

binding
Specific binding to lipid domains
determines AMP mode of action



Lipid State Observer LISO on SUVs/LUVs

30Färber & Westerhausen, BBA Biomembranes 1864 (1), 2022

lipid order



Lipid order and phase transition: LISO – Lipid State
Observer

31Nandy et al., manuscript close to preprint submission

More successful EA 
AMPs (Gen5)

i) level lipid order and 
ii) shift phase

transition to higher T

lipid order



FRET spectroscopy on SUVs/LUVs

32De Miguel Catalina et al., Biochemistry 58, 2019

intercalation

Partitioning
between bacterial
lipids depends on 

VPRTES tail of 
LL37



Atomic force microscopy on solid supported membranes

33Jass et al., Biophys. J. 79 

aggregation



LL-32 and hBD3-l on PE+PG+TDM (1:1:2) bilayer

Nehls et al.: manuscript in preparation TDM: Trehalose dimycolate 34



Potassium iodide fluorescence quenching assay

35
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Decreasing the PC content as for resistant strain

36Palusinska-Szysz et al., BBA Mol Cell Biol Lip 1867, 2022

permeabilization

Resistance of 
Legionella 

micdadei towards
LL-37 

depends on PC 
content of 
membrane



Take-homes

37

All critical membrane interaction steps can be analyzed using

liposome techniques.

Only complementary comparison of different techniques and 

model systems provides full understanding.

Changes in lipid composition may dramatically modify the

membrane interaction.



Microfluidic evaluation of
AMPs



Standardized
prediction

of
antimicrobial

activity

Team Microfluidics

39



Al Nahas et al. Lab on a Chip, 2019 40



Trapping hundreds of liposomes on chip

41



Time 42



Mammalian Model
DOPC

Bacterial Model
DOPC:DOPG 1:1

hBD3-lMelittin
Proof of concept
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Dye release of 
microfluidic trapped
liposomes provides
reasonable results



Our technique provides additional information…

45

Half empty – half full All-OR-NONE

Partial release of dye GRADED



Take-homes

49

Microfluidic trapping bridges single liposome and bulk analysis.

Quantitative evaluation enables classification of mode of 

action continuum of membrane active compounds.

Membrane interaction is key to predict antimicrobial potential 

of AMPs (and other compounds).
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Advertisement

51



Wrap-up

52

Ein Bild, das Grafiken, Grafikdesign, Clipart, Design enthält.

Automatisch generierte Beschreibung

Ein Bild, das Text, Screenshot, Diagramm enthält.

KI-generierte Inhalte können fehlerhaft sein.

Ein Bild, das Text, Screenshot, Diagramm enthält.

KI-generierte Inhalte können fehlerhaft sein.

Ein Bild, das Text, Screenshot, Schrift, Grafiken enthält.

Automatisch generierte Beschreibung

Ein Bild, das Text, Screenshot, Schrift, Grafiken enthält.

Automatisch generierte Beschreibung
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