Dual Centrifugation for Liposome- and LNP-preparation

V. Bender, JK. Koehler, S. Schmager, L. Fuchs, R. Süss, HH. Heerklotz & <u>Ulrich Massing</u>

Dual centrifugation enables "in-vial"-homogenization

Example – preparation of liposomes by in-vial homogenization (DC)

- Fast & cheap
- Disposable vials (no cleaning)
- Sterile (bedside prep. possible)
- Small to medium sized batches (ca. 1 mg up to 2 g lipid)
- High passive liposomal entrapping efficiencies (up to 70%)
- Lipid concentration determines the liposome characteristics

•

Lipid concentration during in-vial homogenization determines the liposome characteristics

HEPC/Chol 55/45 mol%

Scale bar: 50 nm

Small Multilamellar Vesicles (SMVs)

- Homogenization under a shortage of water, only possible using in-vial homogenization
- as lipophilic compounds

Adopted and adjusted from Barba et al., Pharmaceutics, 2019

Preparation of LNPs by in-vial homogenization

DC-conditions:

- 1 mg SM102/Chol/DSPC/ DMG-PEG2000 (50/40/8/2)
- miRNA-100-5p (ZS-Green kockdown)
- Acidic buffer
- DC: 5 min. (RT)
- Dilution with neutral buffer

Formulation	Z-average [nm]	PDI	Encapsulation efficiency [%]	Zeta potential [mV]
SM102/CHOL/DSPC/ DMG-PEG2000 (50/40/8/2)	115.8 ± 4.0	0.175 ± 0.021	91.3 ± 1.0	-1.43 ± 0.97

Knockdown efficiency in ZsGreenexpressing HEK293A cells. The cells were treated with 75 nM miRNA-100-5p for 2 h, followed by 72 h incubation prior to analysis by flow cytometry (n=3).

Cytotoxicity was determined with the CellEventTM Caspase-3/7 Green Flow Cytometry Assay Kit after the same treatment scheme as the Knockdown measurements (n=3).

Preparation of LNPs by in-vial homogenization

- In-vial homogenization is gentle enough to keep RNA intact but efficient enough to form LNPs
- Very low lipid- and RNA-amounts can be processed
- Alternative to LNP-preparation techniques which bases on alcoholic lipid solutions (faster, no alcohol, no buffer exchange)
- Allow a fast formulation screening

Take home

- In-vial homogenization based on DC is a highly efficient but at the same time very gentle method for liposome and LNP preparation in closed and sterile vials (unique combination of impact and friction).
- The lipid concentration during in-vial homogenization strongly influences the morphology of the resulting particles or vesicles.
 - Unilamellar liposomes
 - Small multilamellar vesicles (SMVs; accessible for the first time).
 - Unusual high EE-values can be achieved
- LNP-preparation is possible in small quantities without the use of alcohol or buffer exchange, thus supplementing the existing technology.

Thanks to

University of Freiburg

- Heiko Heerklotz
- Jonas Köhler
- Stefanie Schmager
- Valentin Bender
- Leon Fuchs

University of Uppsala

- Katarina Edwards
- Lars Gedda

The Hettich-Team

- Jessica Kluth
- Vittorio Ziroli

For more information:

Ulrich Massing
ulrich.massing@pharmazie.uni-freiburg.de