Tetraether lipid (and CPP-modified) liposomes for oral peptide delivery

Philipp Uhl Institute of Pharmacy and Molecular Biotechnology Department of Pharmaceutical Technology and Biopharmacy Heidelberg University 09.09.2024

Repeated (daily) injections

Improved patient compliance

Oral peptide delivery – Challenges

Oral peptide delivery requires the <u>circumvention of multiple structural</u> and functional barriers:

Strategies applied:

- Permeation enhancers
- Mucolytics
- Hydrogels
- Patches
- Microneedle injector devices

- Targeted nanoparticles
- Permeation enhancers
- Cell-penetrating peptides

Adapted from: Drucker, Daniel J. Nature Reviews Drug Discovery 19 (2020): 277-289.

Strategy: TELs and CPP-phospholipid-conjugate

Key features:

- Tetraether lipids (GCTE)Non-GMP
- CPP-conjugate:GMP-compliantNon-toxic (rodents, dogs)
- Peptide therapeutics
 Bulevirtide
 Vancomycin
 FU002 (preclinical development)
 GLP-1 analogues (ongoing)

Werner, J. et al., Adv. Healthc. Mater. 2024, 13, 2303654.

Role of tetraether lipids in oral peptide delivery

TEL-containing formulations:

- phospholipid-based formulations
- minor amount of TELs

Added value of TELs:

- bilayer stabilization
- prevention of leakage
- permeation enhancing effect?

Limitations:

- complex process
- synthesis not yet possible
- availability / regulatory issues

Mühlberg, E. et al., Nanomedicine 2021, 16, 1813-1832.

Uhl, P. et al., Eur. J. Pharm. Sci. 2017, 108, 111-118.

Uhl, P. et al., Eur. J. Pharm. Biopharm. 2016, 103, 159-166.

Tetraether lipid liposomes for oral peptide delivery

Oral delivery of bulevirtide (Hepcludex®)

1.5 -1.0 %ID/g liver 0.5 1 mol-% standard lip. 5 mol-% 10 mol-% **GCTE GCTE GCTE**

Uhl, P. et al., Eur. J. Pharm. Biopharm. 2016, 103, 159-166.

Oral delivery of vancomycin

Uhl, P. et al., Eur. J. Pharm. Sci. 2017, 108, 111-118.

CPP-phospholipid-conjugate

Patent: WO2017067642A1.

CPP

Uhl, P. et al., Adv. Therap. 2023, 6, 2300021.

Animal studies of liposomal vancomycin

Are results from rodent studies transferable to higher mammals?

Uhl, P. et al., Adv. Therap. 2021, 4, 2000247.

Uhl, P. et al., Adv. Therap. 2023, 6, 2300021.

ROVANCE – to overcome bacterial resistance

ROVANCE library: > 100 derivatives

Lead candidate FU002 (preclinical development)

Patent application WO 2020/094015

Umstätter, F. et al., Angew. Chem. Int. Ed. 2020, 59, 8823-8827.

ROVANCE – to overcome bacterial resistance

FU002: high activity on resistant enterococci

E. faecium E. faecium E. faecium E. faecium E. casseliflavus UL602570* ATCC51559 UL407074* ATCC51299 UL405955* ATCC700327

Umstätter, F. et al., Angew. Chem. Int. Ed. 2020, 59, 8823-8827. Mühlberg, E. et al., Pharmaceuticals 2020, 13:110.

Biodistribution profile

FU002

- resistance breaking (in vitro and in vivo)
- altered biodistribution profile
- limitation: low oral bioavailability

In vitro studies with liposomal FU002

Characterization of liposomes

Werner, J. et al., Adv. Healthc. Mater. 2024, 13, 2303654.

Liposomal formulation of FU002 – in vivo studies

In vivo pharmacokinetics in rats

In vivo efficacy in a murine systemic infection model

Werner, J. et al., Adv. Healthc. Mater. 2024, 13, 2303654.

Liposomes as platform technology?

Results obtained with CPP-liposomes

Model drug	Rodents	Beagle dogs
Vancomycin	5.16*	2.42*,\$
Exenatide	14.21*,§	18.80*,#
FU002	5.38*	

^{*} Effect only in fasted state

CPP-liposomes: oral exenatide

Uhl, P. et al., Adv. Therap. 2023, 6, 2300021.

GLP-1 analogues: Ideal for platform testings

^{\$} Oral bioavailability: 3.90%

[§] Oral bioavailability (GCTE-liposomes): 0.426%

[#] Oral bioavailability: **0.29%**

Liposomes as platform technology?

GLP-1 analogues: Overview

<u>Liposomal characteristics</u>

https://www.ncbi.nlm.nih.gov/books/NBK279141/figure/pharmaco-agent-diab2.F10/

Herbster, L. unpublished data.

Liposomes as platform technology?

Liposomal uptake

Uptake of GLP-1 analogues

Herbster, L. unpublished data.

Summary

Results obtained

- Increased oral bioavailability of vancomycin (rodents and dogs)
- Increased oral bioavailability of FU002 (rodents, therapeutic efficacy)
- Increased oral bioavailability of exenatide (rats and dogs)
- GLP-1 analogues study ongoing

Platform technology for oral peptide delivery?

- Availability of TELs and CPP-conjugate
- Application range of technology
- Transferability of animal data to humans

Thank you for your attention!

Thanks to:

My team at Heidelberg University

- Julia Werner, Lorenz Herbster (Liposomes)
- Florian Umstätter, Eric Mühlberg (FU002)

The cooperation partners

- Ohlsen lab (Würzburg)
- Fricker/Mier lab (Heidelberg)
- And many more....

Phospholipid Research Center

We Invest in Quality.

Lipoid

https://uhl-group.de/