

PHARMACEUTICAL NANOTECHNOLOGY

(https://www.helsinki.fi/en/researchgroups/pharmaceutical-nanotechnology)

Light activation and photochemistry

- Light activated liposomes
- Part of the PREIN Flagship

Nanoparticles for drug delivery

- Liposomes, micelles, DNA nanoparticles etc.
- Part of the GeneCellNano Flagship

Hydrogels and controlled drug release

- Cellulose nanofibers (Collaboration with UPM)
- Photoactivatable Drug Releasing Implants (ERC) **Consolidator Grant**)

HELSINGIN YLIOPISTO UNIVERSITY OF HELSINKI

PARTICLES IN CIRCULATION VS. CONTROLLED DRUG RELEASE MATERIALS

Controlled release

CELLULOSE NANOFIBERS (NFC/CNF)

HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI

Adapted from Isogai et al., Nanoscale, 2011 Valo et al., Eur. J. Pharm. Sci., 2013

HYDROGELS AS DRUG RESERVOIRS

Using the hydrogel directlymore convenient approach

- Cellulose nanofiber hydrogel as a starting material (native / oxidized)
- Sustained drug release possible
- Hydrogels can be freeze-dried and rehydrated for improved storage
- APIs can be successfully incorporated and diffusion coefficients determined

Diffusion study Cumulative release (%) 8 8 8 Cumulative release (%) Time (h) Time (h)

HOW TO BETTER CONTROL OR MODULATE THE RELEASE RATE?

HOW ABOUT BIGGER THINGS, LIKE NANOPARTICLES, INSTEAD OF MOLECULES?

Increasing nanocellulose concentration slows down the release Positive charge locks the particles inside the hydrogel

LIGHT-ACTIVATION OF LIPSOMES

Light excitation at 808 nm enables good tissue penetration and safety

Light energy is converted to heat, which releases the contents from thermosensitive liposomes

PHOTO-OXIDATION – ANOTHER METHOD FOR LIGHT ACTIVATION

Olga Lem

LASU – Zn phtalocyanine photosensitizer for ROS generation. Binds to cellulose! Liposomes also bind to cellulose → Simple mixing is enough to process the material

LIPOSOMES AND ROS - SIMPLER

Optimization is considerably easier, for example this works:

60% DPPC Stability, prevents leakage

30% DOPC/DOTAP ROS-sensitivity

5% DSPE-PEG Biocompatibility

5% Cholesterol Stability, prevents leakage

LIPID OXIDATION

Free radicals or singlet oxygen lead to the oxidation of lipids (hydroperoxides)

Type I H

Unsaturated lipid

R

Type II

P

Type II

Type II

Type II

Type II

In practice, several different oxidation products are seen (related to the applied light dose)

RED-LIGHT ABSORBING SENSITIZER BINDS TO CELLULOSE

Pyridine substituted phthalocyanine zinc complex

Absorption max. at ca. 690 nm

LIGHT-ACTIVATED & ROS-MEDIATED RELEASE FROM CELLULOSE NANOFIBERS

Release from the liposomes

Release from CNF

ACKNOWLEDGEMENTS

University of Helsinki:

Professor Timo Laaksonen

University researcher Tatu Lajunen

University lecturer Patrick Laurén

Dr. Zahra Gounani

Dr. Jacopo Zini

PhD student Eija Mäki-Mikola

PhD student Anna Klose

PhD student Puja Gangurde

PhD student Paria Mojarrad

PhD student Roosa Kekki

Tampere University:

University lecturer Elina Vuorimaa-Laukkanen

Dr. Nikita Durandin

Dr. Ali Eftekhari

Dr. Adel Badria

PhD student lida Haapalehto

PhD student Olga Lem

PhD student Kelsey de Graaf

PhD student Riikka Rimmistö

Past:

Dr. Hanna Valo

Dr. Ruzica Kolakovic

Dr. Kristina Malinovskaja

Dr. Heli Paukkonen

Dr. Hanna Manninen

Dr. Jussi Isokuortti

Dr. Vili-Veli Auvinen

Dr. Kaisa Rautaniemi

